\(\sqrt{24}+\sqrt{35}<\sqrt{25}+\sqrt{36}=5+6=11\)
Vậy \(\sqrt{24}+\sqrt{35}<11\).
Đúng 0
Bình luận (0)
\(\sqrt{24}+\sqrt{35}<\sqrt{25}+\sqrt{36}=5+6=11\)
Vậy \(\sqrt{24}+\sqrt{35}<11\).
so sanh x va y biet
a) x=\(2\sqrt{7}\)va y=\(3\sqrt{3}\)
b) x=\(6\sqrt{2}\)va y=\(5\sqrt{3}\)
c) x=\(\sqrt{31}-\sqrt{33}\) va y=\(6-\sqrt{11}\)
so sanh 4+\(\sqrt{33}va\sqrt{29}+\sqrt{14}\)
so sanh
\(\sqrt{25+9}va\sqrt{25}+\sqrt{9}\)
SO SANH
\(-2\sqrt{5}va-5\sqrt{2}\)
tinh va so sanh:
a:\(\sqrt{9\cdot4}\)va \(\sqrt{9}\cdot\sqrt{4}\)
b:\(\sqrt{169-144}\)va \(\sqrt{169}-\sqrt{144}\)
so sanh \(\sqrt{8}\)va \(\sqrt{5}\)+1
so sanh 4+\(\sqrt{33}\)va \(\sqrt{29}\)+\(\sqrt{14}\)
bai 4 so sanh cac so thuc
\(\frac{4}{9}va\)0,4(5)
\(\sqrt[2]{3}va\sqrt[3]{2}\)
So sanh a va b :
a=\(\sqrt{50+2}\)
b=\(\sqrt{50}+\sqrt{2}\)