Cách1:Ta có:\(\left(\frac{1}{2}\right)^{50}< \left(\frac{1}{2}\right)^{40}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{16}\right)^{10}\)
Vậy..................
Cách 2:Ta có:\(\left(\frac{1}{16}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}>\left(\frac{1}{2}\right)^{50}\)
Vậy......................
\(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1^{10}}{2^{40}}=\frac{1}{2^{40}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1^{50}}{2^{50}}=\frac{1}{2^{50}}\)
Do 250 > 240 => \(\frac{1}{2^{40}}>\frac{1}{2^{50}}\)
=> \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\left(\frac{1}{2}\right)^4\right)^{10}=\left(\frac{1}{2}\right)^{40}\)
Mà \(\left(\frac{1}{2}\right)^{40}>\left(\frac{1}{2}\right)^{50}\)Vì \(2^{40}< 2^{50}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)