Ta có :
\(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{c+a}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a+b+c}{a+b+c}\)
\(\Rightarrow\frac{a}{c+b}+\frac{b}{a+c}+\frac{c}{a+b}>1\)
Chúc bạn học tốt !!!
a/b+c > a/a+b+c (1)
b/c+a > b/a+b+c (2)
c/a+b > c/a+b+c (3)
Lấy (1)+(2)+(3) ta có
a/b+c + b/c+a +c/a+b < 1
Ta có:
\(\frac{a}{b+c}>\frac{a}{a+b+c};\frac{b}{a+b+c}>\frac{b}{a+b+c};\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+c+b}+\frac{c}{a+b+c}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{a+b+c}{a+b+c}\)
Ta thấy \(\frac{a+b+c}{a+b+c}=1\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>1\)
Vậy......
Cô nàng Vân Anh cũng hỏi câu này à?? Lạ nhé!!