\(B=\frac{10^{20}+1}{10^{21}+1}< 1\)
NÊN \(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
VẬY B<A
\(B=\frac{10^{20}+1}{10^{21}+1}< 1\)
NÊN \(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
VẬY B<A
\(\frac{10^{18}+1}{10^{19}+1}và\) \(\frac{10^{19}+1}{10^{20}+1}\)
SO SÁNH GIÚP VỚI
1.\(A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\)
2. \(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
3. Hãy so sánh A và B
\(A=\frac{10^{2006}+1}{10^{2007}+1}\) \(B=\frac{10^{2007}+1}{10^{2008}+2}\)
So sánh A và B biết:
A=\(\frac{10^{17}+1}{10^{18}+1}\), B=\(\frac{10^{18}+1}{10^{19}+1}\)
Bài 1: Tìm x;
x - \(\frac{20}{11.13}\) - \(\frac{20}{13.15}\) -...- \(\frac{20}{53.55}\) = \(\frac{3}{11}\)
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{9}\)
Bài 2: Tìm A biết:
A= \(\frac{7}{10}\)+\(\frac{7}{10^2}\)+ \(\frac{7}{10^3}\)+......
Tính \(A=\left(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{44\cdot49}\right)\cdot\frac{1-3-5-7-...-49}{89}\)
\(B=\frac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^{10}\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot27^3+15\cdot4^9\cdot9^4}{6^9\cdot2^{10}+12^{10}}\)
So sánh các lũy thừa sau
a, \(\left(\frac{1}{16}\right)^{10}va\left(\frac{1}{2}\right)^{50}\)
b, 9920 và 999910
So sánh A và B biết:
A=\(\frac{10^{17}+1}{10^{18}+1}\), B=\(\frac{10^{18}+1}{10^{19}+1}\)
Tính
a) \(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{66}\)
b) \(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+....+\frac{1}{72}+\frac{1}{90}\)
1. CMR:
C = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{99}}< \frac{1}{2}\)\(\frac{1}{2}\)
2. So sánh
a) 9920 và 99910
b) 920 và 2713