Có \(A=\frac{29^{29}+5}{29^{30}+5}\) và \(B=\frac{29^{30}+5}{29^{31}+5}\)
Xét \(A=\frac{29^{29}+5}{29^{30}+5}\Rightarrow29A=\frac{29^{30}+145}{29^{30}+5}=\frac{29^{30}+5}{29^{30}+5}+\frac{140}{29^{30}+5}=1+\frac{140}{29^{30}+5}\)
Xét \(B=\frac{29^{30}+5}{29^{31}+5}\Rightarrow29B=\frac{29^{31}+145}{29^{31}+5}=\frac{29^{31}+5}{29^{31}+5}+\frac{140}{29^{31}+5}=1+\frac{140}{29^{31}+5}\)
Vì \(1+\frac{140}{29^{30}+5}>1+\frac{140}{29^{31}+5}\Leftrightarrow29A>29B\Leftrightarrow A>B\)