a) Ta có: \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì 8 < 9 => 8100 < 9100
=> 2300 < 3200
b) Hình như đề sai Phải so sánh với 3.2410 chứ bạn
Ta có: \(3.24^{10}=3.\left(3.2^3\right)^{10}=3^{11}.2^{30}=3^{11}.4^{15}< 4^{15}.4^{15}=4^{30}\)
\(\Rightarrow2^{30}+3^{30}+4^{30}>3.24^{10}\)
Ta có 2*300 = (2*3)*100 = 8*100
3*200 = (3*2)*100 = 9*100
=> 2*300 < 3*200
a)
\(2^{300}=2^{3.100}=8^{100}\)
\(3^{200}=3^{2.100}=9^{100}\)
Vì 8<9 nên \(8^{100}< 9^{100}\)
Vậy \(2^{300}< 3^{200}\)
b)
\(2^{30}+3^{30}+4^{30}=2^{3.10}+3^{3.10}+4^{3.10}=8^{10}+9^{10}+64^{10}\)
\(3.4^{10}=4^{10}+4^{10}+4^{10}\)
Vì \(4^{10}< 8^{10}< 9^{10}< 64^{10}\)nên \(4^{10}+4^{10}+4^{10}< 8^{10}+9^{10}+64^{10}\)
Vậy \(2^{30}+3^{30}+4^{30}>3.4^{10}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\) \(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)