a) \(\sqrt{2004}-\sqrt{2003}=\frac{1}{\sqrt{2004}+\sqrt{2003}}>\frac{1}{\sqrt{2006}+\sqrt{2005}}=\sqrt{2006}-\sqrt{2005}\)
b) Tương tự.
a) \(\sqrt{2004}-\sqrt{2003}=\frac{1}{\sqrt{2004}+\sqrt{2003}}>\frac{1}{\sqrt{2006}+\sqrt{2005}}=\sqrt{2006}-\sqrt{2005}\)
b) Tương tự.
1/ So sánh
a) 3 - 2\(\sqrt{3}\) và 2\(\sqrt{6}\) - 5
b) \(\sqrt{4\sqrt{5}}\) và \(\sqrt{5\sqrt{3}}\)
c) 3 - 2\(\sqrt{5}\) và 1 - \(\sqrt{5}\)
d) \(\sqrt{2006}\) - \(\sqrt{2005}\) và \(\sqrt{2005}\) - \(\sqrt{2004}\)
e) \(\sqrt{2003}\) + \(\sqrt{2005}\) và \(2\sqrt{2004}\)
2/ Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất
a) -x² + 4x - 2
b) \(\sqrt{2x^2\:+\:3}\)
c) 2x - \(\sqrt{1x}\)
d) -3 + \(\sqrt{2x^2\:+\:49}\)
e) \(\sqrt{9x^2\:-\:4x\:+\:65}\)
f) -5 + \(\sqrt{4\:-\:9x^2\:+\:6x}\)
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\times\sqrt{2004-2\sqrt{2006}-2\sqrt{2005}}\)
So sánh
a) \(\sqrt{2}+\sqrt{3}\)và \(\sqrt{5}\)
b) \(\sqrt{2003}+\sqrt{2005}\)và \(2.\sqrt{2004}\)
So sánh 2 số sau:\(x=\sqrt{2003}+\sqrt{2004}+\sqrt{2005},y=\sqrt{2001}+\sqrt{2002}+\sqrt{2009}\)
So sánh:
a) \(\sqrt{3}+\sqrt{5}\) và \(\sqrt{17}\)
b) \(\sqrt{2004}+\sqrt{2006}\)và \(2\sqrt{2005}\)
so sánh ( k dùg bảng số hay mt bỏ túi )
a. \(\sqrt{2}+\sqrt{3}\) vs \(\sqrt{10}\)
b. \(\sqrt{2003}+\sqrt{2005}\)vs \(2\sqrt{2004}\)
c. \(\sqrt{5\sqrt{3}}\)vs\(\sqrt{3\sqrt{5}}\)
So sánh : a, \(\sqrt{3}+\sqrt{5}với\sqrt{17}\)
b,\(\sqrt{2004}+\sqrt{2006}với2\sqrt{2005}\)
so sánh \(\sqrt{2003}+\sqrt{2005}\) và \(2\sqrt{2004}\)
so sánh \(\sqrt{2006}-\sqrt{2005}\)và\(\sqrt{2005}-\sqrt{2004}\)