Ta có \(A=\frac{5^{2013}-3}{5^{2014}+1}\)
\(\Rightarrow5A=\frac{5^{2014}-15}{5^{2014}+1}=\frac{5^{2014}+1-16}{5^{2014}+1}=1-\frac{16}{5^{2014}+1}\)
Ta có \(B=\frac{5^{2015}-3}{5^{2016}+1}\)
\(\Rightarrow5A=\frac{5^{2016}-15}{5^{2016}+1}=\frac{5^{2016}+1-16}{5^{2016}+1}=1-\frac{16}{5^{2015}+1}\)
Ta thấy \(5^{2014}+1< 5^{2016}+1\Rightarrow\frac{16}{5^{2014}+1}>\frac{16}{5^{2016}+1}\)
Do đó \(1-\frac{16}{5^{2014}+1}< 1-\frac{16}{5^{2016}+1}\)hay \(5A< 5B\)
Khi đó A < B