a) \(\frac{1995}{1997}\)và \(\frac{1995}{1996}\)
Ta có : \(\frac{1995}{1996}=\frac{1995\times2}{1996\times2}=\frac{3990}{3992}\)
\(1-\frac{1995}{1997}=\frac{2}{1997};1-\frac{3990}{3992}=\frac{2}{3992}\)
Vì \(\frac{2}{1997}>\frac{2}{3992}\)nên \(\frac{1995}{1997}< \frac{3990}{3992}\)hay \(\frac{1995}{1997}< \frac{1995}{1996}\).
b) \(\frac{2016}{2017}\)và \(\frac{2017}{2018}\)
Ta có : \(1-\frac{2016}{2017}=\frac{1}{2017};1-\frac{2017}{2018}=\frac{1}{2018}\)
Vì \(\frac{1}{2017}>\frac{1}{2018}\)nên \(\frac{2016}{2017}< \frac{2017}{2018}\).
c) \(\frac{2018}{2019}\)và \(\frac{2017}{2016}\).
Vì \(\frac{2018}{2019}< 1;1< \frac{2017}{2016}\)nên \(\frac{2018}{2019}< \frac{2017}{2016}\).
~ HOK TỐT ~
a)\(\frac{1995}{1997}\)< \(\frac{1995}{1996}\)
b)\(\frac{2016}{2017}\)< \(\frac{2017}{2018}\)
c)\(\frac{2018}{2019}\)< \(\frac{2017}{2016}\)
\(a,\frac{1995}{1997}< \frac{1995}{1996}\)
\(b,\frac{2016}{2017}< \frac{2017}{1208}\)
\(c,\frac{2018}{2019}< \frac{2017}{2016}\)
\(\frac{1995}{1997}< \frac{1995}{1996}\)
\(\frac{2016}{2017}< \frac{2017}{2018}\)
\(\frac{2018}{2019}< \frac{2017}{2016}\)
a 1995\1997<1995\1996
b 2016\2017<2017\2018
c 2018\2019<2017\2016