So sánh x;y trong mỗi trường hợp sau:
a) x=\(\sqrt{27}-\sqrt{2}\)và y=\(\sqrt{3}\)
b) \(x=\sqrt{5\sqrt{6}}\)và \(y=\sqrt{6\sqrt{5}}\)
c) \(x=2m\)và \(y=m+2\)
GIÚP MÌNH GIẢI BÀI NÀY VỚI (T_T) !!!!!
So sánh x và y:
x=\(\sqrt{27}-\sqrt{2}\)và y=\(\sqrt{3}\)
x=\(\sqrt{5\sqrt{6}}\)và y=\(\sqrt{6\sqrt{5}}\)
x=2m và y=m+2
câu 1: rút ngọn biểu thức sau
\(A=\left(2\sqrt{3}+4\sqrt{27}-\sqrt{108}\right)\div2\sqrt{3}\)
\(B=\sqrt{9+4\sqrt{5}}-2\left(\sqrt{5}+1\right)\)
câu 2:
trong mặt phẳng tọa độ Oxy, cho ba đường thẳng (d1):y=x+2, (d2) : y=-x +4 và (d3) : y=mx+m. (m là tham số thực ).
a) vẽ (d1) và (d2) trên cùng một mặt phẳng tọa độ Oxy.
b) xác định các giá trị của hàm số m để đường thẳng (d3) đi qua giao điểm của (d1) và (d2).
câu 3:
Anh Hoàng thiết kế một ngôi nhà với phần mái có dạng hình tam giác cân ABC. Biết rằng góc tạo bởi phần mái và mặt phẳng nằm ngang là 28°, chiều dài mỗi bên mái là 3,8 m (minh họa như hình bên dưới). Tính khoảng cách giữa hai điểm B, C.
Câu 4. Cho nửa đường tròn tâm O, đường kính AB. Lấy điểm C thuộc nửa đường tròn (C khác A, khác B) sao cho CA <CB. Và OM vuông góc với AC, ON vuông góc với BC (M thuộc AC, N thuộc BC).
a) Chứng minh tứ giác OMCN là hình chữ nhật.
b) Tiếp tuyến tại A của nửa đường tròn tâm O cắt BC tại E, vẽ CH vuông góc với AB (H thuộc AB). Chứng minh: EC.CB = AH.AB.
c) Tiếp tuyến tại B của nửa đường tròn tâm O cắt ON tại F, OM cắt AE tại I. Chứng mình IF là tiếp tuyến của nửa đường tròn tâm O.
\(B=\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
So sánh B và \(\sqrt{B}\)
Q=\((\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x}^3-\sqrt{y}^3}{y-x}):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
1) rút gọn Q
2) chứng minh Q\(\ge0\)
3) so sánh Q với \(\sqrt{Q}\)
Cho biểu thức A=\(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{x\sqrt{x}+y\sqrt{y}}\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x\sqrt{x}-y\sqrt{y}}{x-y}\right)\)
a Rút gọn biểu thức A
b so sánh A và \(\sqrt{A}\)
Cho A=\(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{x\sqrt{x}+y\sqrt{y}}\times\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x\sqrt{x}-y\sqrt{y}}{x-y}\right)\)
a)Rút gọn A
b)So sánh A và \(\sqrt{A}\)
\(Q=\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x}^3-\sqrt{y}^3}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}\)
1) rút gọn M
2) chứng minh Q\(\ge\)0
3) so sánh Q với \(\sqrt{Q}\)
\(\dfrac{\sqrt{27}-\sqrt{15}}{3-\sqrt{5}}+\dfrac{4}{2+\sqrt{3}}-\dfrac{6}{\sqrt{3}}\)
\(\dfrac{x-y}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\)