Có: \(\frac{a+3}{a+5}=\frac{a+5-2}{a+5}=\frac{a+5}{a+5}-\frac{2}{a+5}\)\(=1-\frac{2}{a+5}\)
Tương tự ta có: \(\frac{a+2003}{a+2005}=1-\frac{2}{a+2005}\)
Có: \(\left(a+5\right)< \left(a+2005\right)\)
\(\Rightarrow\frac{2}{a+5}>\frac{2}{a+2005}\)\(\Rightarrow-\frac{2}{a+5}< -\frac{2}{a+2005}\)\(\Rightarrow1-\frac{2}{a+5}< 1-\frac{2}{a+2005}\)
Vậy \(\frac{a+3}{a+5}< \frac{a+2003}{a+2005}\)