Ta có: \(M=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\Rightarrow M-1=\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}
Ta có: \(M=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\Rightarrow M-1=\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}
Cho \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\)
So sánh S với 1
So sánh A với 2 biết A = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{99!}+\frac{1}{100!}\).
so sánh: \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.........+\frac{1}{2^{100}}\)với 1
So sánh : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) với 2
So sánh A = 1 + \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) với 2 ta được A ... 2
a, Cho A=\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{99}+\frac{1}{100}\) . So Sánh A với 1
b, B=\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\). So sánh B với \(\frac{1}{2}\)
c, cho M=\(\frac{2013}{2014}+\frac{2014}{2015}\)và N=\(\frac{2013+2014}{2014+2015}\). So sánh M và N
Câu a, p/s cuối cùng là \(\frac{1}{100}\)nha mí bn
So sánh \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)với 1
\(\frac{99^1}{1}+\frac{99^2}{1}+\frac{99^3}{1}+...+\frac{99^{100}}{1}\)so sánh với 1001 vạn
A = \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{100}-1}\)
So Sánh A với 100 .
Giúp mình nhanh nha !!!