\(a,\frac{12345}{12342}=1+\frac{3}{12342}\)
\(\frac{23457}{23455}=1+\frac{2}{23455}\)
Vì \(\frac{3}{12342}>\frac{2}{23455}\Rightarrow\frac{12345}{12342}>\frac{23457}{23455}\)
\(b,\frac{149}{150}=1-\frac{1}{150}\)
\(\frac{4}{11}=1-\frac{7}{11}\)
Vì \(\frac{1}{150}< \frac{7}{11}\Rightarrow\frac{149}{150}>\frac{4}{11}\)
12345/12342 = 1 + 3/12342 = 1 + 1/ 4114 = 1 + 2/8228
23457/23455 = 1 + 2/23455
Có 1 + 2/8228 > 1 + 2/23455 => 12345/12342 > 23457/23455.
149/450 < 150/450 = 1/3
4/11 > 4/12 = 1/3
Vậy 149/450 < 4/11