\(M=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(M=1-\frac{1}{50}\)
\(M=\frac{49}{50}\) < 1
VẬY M < 1
M=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+............+\frac{1}{49}-\frac{1}{50}\)
=\(1-\frac{1}{50}<1\)
Vậy M<1
M = 1/1.2 + 1/2.3 +...........+ 1/49.50
M = 1 - 1/2 + 1/2 -1 /3 +............+ 1/49 - 1/50
M = 1 - 1/50
M = 49/50
Vì 49/50 < 1 => M < 1