Ta có: \(333^{555}=\left(3.111\right)^{555}=3^{555}.111^{555}=\left(3^5\right)^{111}.111^{555}=243^{111}.111^{555}\)
\(555^{333}=\left(5.111\right)^{333}=5^{333}.111^{333}=\left(5^3\right)^{111}.111^{333}=125^{111}.111^{333}\)
Vì \(125^{111}< 243^{111}\)và \(111^{333}< 111^{555}\)
\(\Rightarrow125^{111}.111^{333}< 243^{111}.111^{555}\)
Vậy \(555^{333}< 333^{555}\)
A=\(333^{555} = (333^5)^{111} = (( 111 . 3 )^5 ) ^{111} =( 111^5 . 3^5 )^{111} \)
B=\(555^{333}= ( 555^3) ^{111} =(( 111.5 ) ^3 )^{111} = (111^3 . 5^3 )^{111} \)
Ta thấy \(111^5 > 111^3 \) và \(3^5(243)>5^3 (125)\)
=> A>B
A=333^555=(3.111)^5.111=(3^5.111^5)^111=(243.111^5)^111
B=555^333=(5.111)^3.111=(5^3.111^3)^111=(125.111^3)^111
Do: 243.111^5>125.111^3
=>A>B=>333^555>555^333.
333555 = ( 3335)111 = ( 3.3.3.3.3 .111.111.111.111.111 ) 111= ( 35. 1115)111 = ( 243.1115) 111
555333 = ( 5553)111 = (5.5.5.111.111.111) = ( 53.1113)111=(125.1113)111
vì 125 < 243 và 1113 < 1115 nên ( 125.1113)111 < (243.1115)111
vậy 333555 > 555333