Cách 1: So sánh với 1
Ta thấy: \(\frac{a-1}{a}< 1\)
\(\frac{b+1}{b}>1\)
\(\Rightarrow\frac{a-1}{a}< 1< \frac{b+1}{b}\Rightarrow\frac{a-1}{a}< \frac{b+1}{b}\)
Cách 2: Quy đồng hai phân số \(\frac{a-1}{a}\) và \(\frac{b+1}{b}\)
\(\frac{a-1}{a}=\frac{b\left(a-1\right)}{b\cdot a}=\frac{ba-b}{ba}\)
\(\frac{b+1}{b}=\frac{a\left(b+1\right)}{a\cdot b}=\frac{ab+b}{ab}\)
Vì \(ba-b< ab+b\Rightarrow\frac{ba-b}{ba}< \frac{ab+b}{ab}\)
\(\Rightarrow\frac{a-1}{a}< \frac{b+1}{b}\)