\(B=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Ta thấy \(\frac{2000}{2001+2002}< \frac{2000}{2001}\)
\(\frac{2001}{2001+2002}< \frac{2001}{2002}\)
\(\Rightarrow B< A\)
\(A=\frac{2000}{2001}+\frac{2001}{2002}\) VÀ\(B=\frac{2000+2001}{2001+2002}\)
\(\Leftrightarrow A=\frac{2000}{2001}+\frac{2001}{2002}=\frac{2000+20001}{2001+2002}\) VÀ \(B=\frac{2000+2001}{2001+2002}\)
\(\Rightarrow A=B\)
chắc mk làm sai
B = \(\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Ta có: \(\frac{2000}{2001}>\frac{2000}{2001+2002}\)
\(\frac{2001}{2002}>\frac{2001}{2001+2002}\)
Cộng vế theo vế:
\(\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000}{2001+2002}+\frac{2001}{2001+2002}=\frac{2000+2001}{2001+2002}\)
Hay A > B