So sánh \(S=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}...\frac{9999}{10000}\)và \(\frac{1}{100}\)
So sánh \(S=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}...\frac{9999}{10000}\)và \(\frac{1}{100}\)
So sánh B = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}...\frac{9999}{10000}\)và \(\frac{1}{100}\)
Cho A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.......\frac{447}{448}.\frac{449}{450}\)
So sánh A với \(\frac{1}{30}\)
So sánh:
a/ \(31^5\)và\(17^7\)
b/\(8^{12}\)và \(12^8\)
c/\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)và \(\frac{1}{2}\)
so sánh 2 số A và B nếu
\(A=-\frac{1}{2018}-\frac{3}{2017^2}-\frac{5}{2017^3}-\frac{7}{2017^4};B=\frac{-1}{2018}-\frac{7}{2017^2}-\frac{5}{2017^3}-\frac{3}{2017^4}\)
So sánh A ;B : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2};B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{200^2}\)
\(M=\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+...+\frac{4019}{2009^22010^2}\)so sánh vói 1
Cho \(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
So sánh S với 10