Coi:
\(A=\frac{3^{17}+1}{3^{20}+1}\)và\(B=\frac{3^{20}+1}{3^{23}+1}\)
Có:\(A=\frac{3^{17}+1}{3^{20}+1}=\left(\frac{3^{17}+1}{3^{20}+1}\right).\frac{3^3}{3^3}=\frac{3^{20}+27}{3^{23}+27}\)
Ta lại có:
\(1-A=1-\frac{3^{20}+27}{3^{23}+27}=\frac{3^{23}+27}{3^{23}+27}-\frac{3^{20}+27}{3^{23}+27}=\frac{3^{23}-3^{20}}{3^{23}+27}\)
\(1-B=1-\frac{3^{20}+1}{3^{23}+1}=\frac{3^{23}+1}{3^{23}+1}-\frac{3^{20}+1}{3^{23}+1}=\frac{3^{23}-3^{20}}{3^{23}+1}\)
Vì\(\frac{3^{23}-3^{20}}{3^{23}+27}\frac{3^{20}+1}{3^{23}+1}\)