Đặt A = 1/2 + 1/2^2 + ... +1/2^100
2A = \(1+\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^{99}}\)
2A - A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\frac{1}{2}-\frac{1}{2^2}-..-\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
A = \(1-\frac{1}{2^{100}}
Đặt A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
A = 2A - A = \(1-\frac{1}{2^{100}}