\(\frac{1}{3^{400}}=\frac{1}{\left(3^4\right)^{100}}=\frac{1}{81^{100}}\)
\(\frac{1}{4^{300}}=\frac{1}{\left(4^3\right)^{100}}=\frac{1}{64^{100}}\)
vì \(\frac{1}{81^{100}}<\frac{1}{64^{100}}\)nên \(\frac{1}{3^{400}}<\frac{1}{4^{300}}\)
\(\frac{1}{3^{400}}>\frac{1}{4^{300}}\)
chắc thế!! 47568
Ta có :\(3^{400}\)=\(\left(3^4\right)^{100}\)=\(81^{100}\)
\(4^{300}=\left(4^3\right)^{100}=64^{100}\)
Vì \(81^{100}\) >\(64^{100}\) nên \(\frac{1}{3^{400}}\)<\(\frac{1}{4^{300}}\)