\(A^3=n+1+n-1+3\sqrt[3]{n+1}.\sqrt[3]{n-1}\left(\sqrt[3]{n+1}+\sqrt[3]{n-1}\right)=2n+3\sqrt[3]{\left(n-1\right)\left(n+1\right)}\left(\sqrt[3]{n+1}+\sqrt[3]{n-1}\right)\)Vì n >=1 nên A3 > B3 => A > B
\(A^3=n+1+n-1+3\sqrt[3]{n+1}.\sqrt[3]{n-1}\left(\sqrt[3]{n+1}+\sqrt[3]{n-1}\right)=2n+3\sqrt[3]{\left(n-1\right)\left(n+1\right)}\left(\sqrt[3]{n+1}+\sqrt[3]{n-1}\right)\)Vì n >=1 nên A3 > B3 => A > B
So sánh: \(A=\sqrt[3]{n+1}+\sqrt[3]{n-1}\) với \(B=2\sqrt[3]{n}\) \(\left(n\ge1\right)\)
a, Cm công thức
\(\forall n\ge1\) ta có \(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b, áp dụng tính
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)
Với mỗi số nguyên dương \(n\le2008\)
Đặt \(S_n=a^n+b^n\) với \(a=\frac{3+\sqrt{5}}{2}\) và \(b=\frac{3-\sqrt{5}}{2}\)
CMR với \(n\ge1\) ta có \(S_n-2=\left[\left(\frac{\sqrt{5}+1}{2}\right)^n-\left(\frac{\sqrt{5}-1}{2}\right)^n\right]^2\)
CMR: \(\frac{1}{4}< \frac{2-\sqrt{2+\sqrt{2+\sqrt{2}+...+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2+\sqrt{2}+...+\sqrt{2}}}}< \frac{3}{10}\)với ở tử có n dấu căn, ở mẫu có n - 1 dấu căn \(\left(n\in N;n\ge1\right)\)
Chứng minh rằng :
\(a,\sqrt{10}-\sqrt{2}=2.\sqrt{3-\sqrt{5}}\)b
\(b,\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\) là một số tự nhiên
c CMR với n thuộc N thì \(\left(\sqrt{n+1}-\sqrt{n}\right)^2=\sqrt{\left(2n+1\right)^2-1}\)
So sánh: \(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}+...+\sqrt{n\left(n+1\right)};\frac{\left(n+1\right)\left(n+2\right)}{4}\)
a/Chứng minh rằng \(\frac{2}{\left(2n+1\right)\sqrt{n}+\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b/Áp dụng chứng minh
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{4003\left(\sqrt{2001}+\sqrt{2002}\right)}<\frac{2001}{2003}\)
Chứng minh bất đẳng thức sau với mọi n nguyên dương:
\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3\sqrt[3]{n}}< \sqrt[3]{n^2}-\sqrt[3]{\left(n-1\right)^2}\)
Chứng minh bất đẳng thức sau với mọi n nguyên dương:
\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3\sqrt[3]{n}}< \sqrt[3]{n^2}-\sqrt[3]{\left(n-1\right)^2}\)