A < B vì A là phân số nhỏ hơn 1 ; B là phân số lớn hơn 1 nên A < B
A < B vì A là phân số nhỏ hơn 1 ; B là phân số lớn hơn 1 nên A < B
so sanh:
\(\frac{45}{87}\)........... \(\frac{23}{76}\)
43535.........53455
So sánh A= \(\frac{79^{2018}+1}{79^{2019}+1};B=\frac{79^{2019}-2021}{79^{2020}-2011}\)
A=\(\frac{2000}{2001}\) +\(\frac{2001}{2002}\) và B= \(\frac{2000+2001}{2001+2002}\)
so sánh 2 phân số trên dùm mk nha
cho \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\left(a;b;c;d\ne0\right)\)
\(A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}=?\)
tinhs A
\(VT=a+b+\frac{1}{a}+\frac{1}{b}=\left(a+\frac{1}{2a}\right)+\left(b+\frac{1}{2b}\right)+\frac{1}{2a}+\frac{1}{2b}\)
để ý \(1=a^2+b^2\ge2ab\Leftrightarrow ab\le\frac{1}{2}\)
\(\frac{1}{2a}+\frac{1}{2b}\ge2\sqrt{\frac{1}{4ab}}\ge2\sqrt{\frac{1}{2}}\)
\(a+\frac{1}{2a}\ge2\sqrt{\frac{1}{2}}\)
\(b+\frac{1}{2b}\ge2\sqrt{\frac{1}{2}}\)
+ 3 vế thì ta được \(VT\ge6\sqrt{\frac{1}{2}}\) dấu = khi \(\frac{1}{2a}=\frac{1}{2b}....a=\frac{1}{2a}....b=\frac{1}{2b}\)
Áp dụng bất đẳng thức bu nhi a , ta có
\(\left(a+b+c\right)\left[\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right]\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2\)
mà bạn dễ dàng chứng minh \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\) với abc=1
=>A(a+b+c)^2>=1
=>\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\ge\frac{1}{a+b+c}\left(ĐPCM\right)\)
đấu = xảy ra <=> a=b=c1
cho a,b,c>0
Cmr \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\) (bdt Nesbit)
bang phuong phap SOS
Bài 1: tìm số tự nhiên M nhỏ nhất có 4 chữ số thỏa mãn điều kiện:
\(M=a+b=c+d=e+f\)
biết \(a,b,c,d,e,f\in N\) và \(\frac{a}{b}=\frac{14}{22};\frac{c}{d}=\frac{11}{13};\frac{e}{f}=\frac{13}{17}\)
BÀi 2: cho dãy tỉ số bằng nhau;
\(\frac{2017a+b+c+d}{a}=\frac{a+2017b+c+d}{b}=\frac{a+b+2017c+d}{c}=\frac{a+b+c+2017d}{d}\)
tính \(M=\frac{a+b}{c+d}=\frac{b+c}{d+a}=\frac{c+d}{a+b}=\frac{d+a}{b+c}\)
BÀi 3: cho \(x,y,z,t\ne0\)thỏa mãn:
\(\frac{y+z+t-2017x}{x}=\frac{z+t+x-2017y}{y}=\frac{t+x+y-2017z}{z}=\frac{x+y+z-2017t}{t}\)
và \(x+y+z+t=2016\)tính giá trị của \(P=x+2y-3z+t\)
GIÚP MK VỚI
Cho a,b,c > 0 . Chứng minh rằng :
\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\le\frac{a^3+b^3+c^3}{2abc}\)