\(A=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)
\(A=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)
so sánh D với 1 phần 2:
D=\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)
Chung to A=\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}<\frac{1}{2}\)
Chứng minh rằng \(S=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}
cho \(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{60}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)\(\frac{1}{63}\)
chứng minh \(A< \frac{1}{2}\)
ai làm nhanh,đúng sẽ được 1 like
Chứng minh :
\(S=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)< \(\frac{1}{2}\)
giải giúp mính nhé :
D\(=\) \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)
CMR : D<\(\frac{1}{2}\)
chứng minh rằng:a/ \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}< \frac{1}{2}\) \(\frac{1}{2}\)
b/\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{2}\)\(\frac{1}{2}\)
nhanh thì tích
chậm thì thôi
Chứng minh \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{2}\)\(\frac{1}{2}\)
b,\(\frac{1}{^{2^2}}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
c,\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}>48\)
d,\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
AI GIÚP TỚ VỚI!!!
A) TÌM X
1) \(\left(\frac{1}{12}+3\frac{1}{6}-30,75\right).x-8=\left(\frac{3}{5}+0,415+\frac{1}{200}\right):0,01\)
2) \(\left(\frac{1}{1.101}+\frac{1}{2.102}+...+\frac{1}{10.110}\right).x=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{100.110}\)
B) CHO:
\(M=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}\); \(N=\frac{5^2}{5.10}+\frac{5^2}{10.15}+...+\frac{5^2}{2000.2005}+\frac{5^2}{2005.2010}\)
a) Tính tổng M
b) So sánh M và N
C) CHỨNG TỎ RẰNG
a)\(S=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{2}\)