Ta có :
A = \(\frac{10^{1990}+1}{10^{1991}+1}\)
10A = \(\frac{10.\left(10^{1990}+1\right)}{10^{1991}+1}\)
10A = \(\frac{10^{1991}+10}{10^{1991}+1}\)
10A = \(\frac{10^{1991}+1+9}{10^{1991}+1}\)
10A = \(1+\frac{9}{10^{1991}+1}\left(1\right)\)
Ta lại có :
B = \(\frac{10^{1991}+1}{10^{1992}+1}\)
10B = \(\frac{10.\left(10^{1991}+1\right)}{10^{1992}+1}\)
10B = \(\frac{10^{1992}+10}{10^{1992}+1}\)
10B = \(\frac{10^{1992}+1+9}{10^{1992}+1}\)
10B = \(1+\frac{9}{10^{1992}+1}\left(2\right)\)
Từ \(\left(1\right)va\left(2\right)\)
Ta có :\(1+\frac{9}{10^{1991}+1}>1+\frac{9}{10^{1992}+1}\)
\(\Rightarrow\)10A > 10B
\(\Rightarrow\)A > B
10A=10^1991+10/10^1991+1 ;10B=10^1992+10/10^1992+1
10A=1+(10^1991+10-10^1991-1/10^1991+1) ;10B=1+(10^1992+10-10^1992-1/10^1992+1)
10A=1+(9/10^1991+1) ; 10B=1+(9/10^1992+1)
Có: 9/10^1991+1 > 9/10^1992+1
=>10A>10B
=>A>B