Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thảo Nguyễn『緑』

So sánh :

\(A=\frac{10^{1990}+1}{10^{1991}+1}\) và \(B=\frac{10^{1991}+1}{10^{1992}+1}\)

\(A=\frac{10^{1990}+1}{10^{1991}+1}\Rightarrow10A=\frac{10^{1991}+10}{10^{1991}+1}=1+\frac{9}{10^{1991}+1}\)

\(B=\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow10B=\frac{10^{1992}+10}{10^{1992}+1}=1+\frac{9}{10^{1992}+1}\)

Vì \(10^{1991}< 10^{1992}\Rightarrow1+\frac{9}{10^{1991}+1}>1+\frac{9}{10^{1992}+1}\)

\(\Rightarrow\frac{10^{1990}+1}{10^{1991}+1}>\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow A>B\)

Ta có : \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)

Mà : \(\frac{10^{1991}+1+9}{10^{1992}+1+9}=\frac{10^{1991}+10}{10^{1992}+10}\)

\(=\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)

\(=\frac{10^{1990}+1}{10^{1991}+1}\)

\(\Rightarrow B< A\)

                                           Giải

                           +) Ta có \(A=\frac{10^{1990}+1}{10^{1991}+1}\)

                                        \(10A=\frac{10\left(10^{1990}+1\right)}{10^{1991}+1}\)

                                                 \(=\frac{10.10^{1990}+10.1}{10^{1991}+1}\)

                                                 \(=\frac{10^{1991}+10}{10^{1991}+1}\)

                                                  \(=\frac{10^{1991}+1+9}{10^{1991}+1}\)

                                                   \(=\frac{10^{1991}+1}{10^{1991}+1}+\frac{9}{10^{1991}+1}\)

                                                    \(=1+\frac{9}{10^{1991}+1}\)

                         +) Ta có \(B=\frac{10^{1991}+1}{10^{1992}+1}\)

                                        \(10B=\frac{10\left(10^{1991}+1\right)}{10^{1992}+1}\)

                                                 \(=\frac{10.10^{1991}+10.1}{10^{1992}+1}\)

                                                 \(=\frac{10^{1992}+10}{10^{1992}+1}\)

                                                  \(=\frac{10^{1992}+1+9}{10^{1992}+1}\)

                                                   \(=\frac{10^{1992}+1}{10^{1992}+1}+\frac{9}{10^{1992}+1}\)

                                                    \(=1+\frac{9}{10^{1992}+1}\)

+) Vì \(10^{1991}+1< 10^{1992}+1\)

     \(\Rightarrow\frac{9}{10^{1991}+1}>\frac{9}{10^{1992}+1}\)

    \(\Rightarrow1+\frac{9}{10^{1991}+1}>\text{​​}1+\frac{9}{10^{1992}+1}\text{​​}\)

Hay \(10A>10B\)

 \(\Rightarrow A>B\)


Các câu hỏi tương tự
Lê Thị Diễm Quỳnh
Xem chi tiết
Vũ Khắc Hùng
Xem chi tiết
Kudo Shiyari
Xem chi tiết
Trần Bảo Hân
Xem chi tiết
XấU GáI _ Ai CũNg NóI Zậ...
Xem chi tiết
Vương Thức
Xem chi tiết
Hoàng Thị Thanh Huyền
Xem chi tiết
trinh thi huyen trang
Xem chi tiết
nguyenducloc
Xem chi tiết