\(A-\frac{1}{A}=\frac{x+9}{6\sqrt{x}}-\frac{6\sqrt{x}}{x+9}=\frac{\left(x+9\right)^2-36x}{6\sqrt{x}\left(x+9\right)}=\frac{\left(x-9\right)^2}{6\sqrt{x}\left(x+9\right)}\ge0\)
\(\Rightarrow A\ge\frac{1}{A}\)
Dấu "=" xảy ra khi x-9 = 0 hay x= 9.
\(A-\frac{1}{A}=\frac{x+9}{6\sqrt{x}}-\frac{6\sqrt{x}}{x+9}=\frac{\left(x+9\right)^2-36x}{6\sqrt{x}\left(x+9\right)}=\frac{\left(x-9\right)^2}{6\sqrt{x}\left(x+9\right)}\ge0\)
\(\Rightarrow A\ge\frac{1}{A}\)
Dấu "=" xảy ra khi x-9 = 0 hay x= 9.
Cho A =\(\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{1}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x-4}\right)\)với x > 0 , x \(\ne\)4
a, Rút gọn A
b, So sánh A với \(\frac{1}{A}\)
bài 1: Cho biểu thức R = \(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{x-2\sqrt{x}}\right)\cdot\left(\frac{1}{\sqrt{x+2}}+\frac{4}{x-4}\right)\)
a/ rút gọn R
b/ Tính giá trị R khi x = 4 + \(2\sqrt{3}\)
c/ Tìm giá trị của x để R >0
bài 2 : Cho A = 6 + 2\(\sqrt{2}\), B = 9 . So sánh A,B .
bài 3 : Chứng minh:
a/ \(\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}\)= a - b (với a >0, b>0, \(a\ne b\))
b/ \(\left(2+\frac{a-\sqrt{a}}{\sqrt{a-1}}\right)\cdot\left(2-\frac{a+\sqrt{a}}{1+\sqrt{a}}\right)=4-a\)(với a >0, a\(\ne1\))
\(A=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\) Với \(x>0;x\ne\frac{1}{4};x\ne1\)
a) Rút gon biểu thức A
b) Tính giá trị của A khi \(x=17-12\sqrt{2}\)
c) So sánh \(A\) với \(\sqrt{A}\)
Đề bài: chứng minh đẳng thức:
a) \(\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{2b}{a-b}=1\)với \(a>0,b>0,a\ne b\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a=1\)với \(a\ne1,a\ge0\)
c) \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)với \(x\ge0,x\ne4,x\ne9\)
d) \(\left(\frac{x+1}{x^3+1}-\frac{1}{-x^2+x-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}+1=\frac{x-1}{x+1}\)với\(x\ne0,x\ne-1,x\ne2\)
\(A=\frac{\sqrt{x}-1}{\sqrt{x}-2}+\frac{\sqrt{x}-4}{\sqrt{x-3}}-\frac{x-3\sqrt{x}+1}{x-5\sqrt{x}+6}\)
So Sánh A với 1
\(T=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\left(x>0\right)\)
a) Rút gọn M
b) Tìm x để \(T=\frac{9}{2}\)
c) So sánh T với 4
ai giúp mk ikk
M=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)
a)Tìm điều kiện xác định và rút gọn M
b) Với x\(\ne\)0 tìm giá trị nhỏ nhất của biểu thức: A= \(\sqrt{x}\).M
\(A=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1+\frac{3\sqrt{x}-1}{3\sqrt{x}+1}\right),\left(x>0,x\ne\frac{1}{9}\right)\)
1. Rút gọn A
2. Tìm x để \(P=\frac{5}{6}\)
cho biểu thức \(A=\left(\frac{1}{x-\sqrt{x}}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\) Với x>0,x Khác 0
a Rút gọn A
b Tính giá chị của p tại X=4+2√3
So sánh A với 1