\(A=\frac{5^5+2}{5^5-2}>\frac{5^5}{5^5-1}>\frac{5^5}{5^5-3}=B\Rightarrow A>B\)
lý Kì Anh Bạn nhầm rồi nhé :)
\(5^5-1>5^5-3\)nên \(\frac{5^5}{5^5-1}< \frac{5^5}{5^5-3}\)
Ta có :
\(A=\frac{5^5+2}{5^5-1}=\frac{5^5-1}{5^5-1}+\frac{3}{5^5-1}\)
\(=1+\frac{3}{5^5-1}\)
\(B=\frac{5^5}{5^5-3}=\frac{5^5-3}{5^5-3}+\frac{3}{5^5-3}\)
\(=1+\frac{3}{5^5-3}\)
\(5^5-1>5^5-3\)
\(\Rightarrow\frac{3}{5^5-1}< \frac{3}{5^5-3}\)
\(\Rightarrow1+\frac{3}{5^5-1}< 1+\frac{3}{5^5-3}\)
\(\Rightarrow A< B\)
Vậy \(A< B.\)