Ta có :
\(\frac{2018}{2019}\)\(+\)\(\frac{2019}{2018}\)\(=\frac{2018}{2019}\)\(+\frac{1}{2018}\)\(+1>\frac{2018+1}{2019}\)\(+1\)
\(=1+1=2\)
\(\Rightarrow\frac{2018}{2019}\)\(+\frac{2019}{2018}\)\(>2\)
\(\Rightarrow A>B\)
Xét \(A=\frac{2018}{2019}+\frac{2019}{2018}=\left(1-\frac{1}{2019}\right)+\left(1+\frac{1}{2018}\right)\)
\(=1-\frac{1}{2019}+1+\frac{1}{2018}=\left(1+1\right)+\left(\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=2+\left(\frac{1}{2018}-\frac{1}{2019}\right)\). Mà \(\frac{1}{2018}>\frac{1}{2019}\Rightarrow2+\left(\frac{1}{2018}-\frac{1}{2019}\right)>2\Leftrightarrow A>B\)
\(A=\frac{2018}{2019}+\frac{2019}{2018}=\frac{2019}{2019}-\frac{1}{2019}+\frac{2018}{2018}+\frac{1}{2018}\)
\(A=1-\frac{1}{2019}+1+\frac{1}{2018}\)
\(A=2-\frac{1}{2019}+\frac{1}{2018}\)
\(\text{Ta có: }\frac{1}{2019}< \frac{1}{2018}\Rightarrow-\frac{1}{2019}+\frac{1}{2018}>0\)
\(\Rightarrow2-\frac{1}{2019}+\frac{1}{2018}>2\)
\(\Rightarrow A>B\)