Tính A và B, ta có:
\(A=\left[3,5\right]+\left[3,5+\frac{1}{3}\right]+\left[3,5+\frac{2}{3}\right]+\left[3,5+\frac{3}{5}\right]+\left[3,5+\frac{4}{5}\right]=\left[3,5\right]+\frac{23}{6}+\frac{25}{6}+\frac{41}{10}+\frac{43}{10}=3,5+16,4=19,9\)
\(B=\left[5.3,5\right]=17,5\)
So sánh ta thấy: 19, 9 > 17, 5 ( vì 19 > 17 )
Vậy A > B
từ trên => A= 3 + 3 + \(\frac{1}{3}\)+ 3 +\(\frac{2}{3}\)+ 3 +\(\frac{3}{5}\)+ 3 + \(\frac{4}{5}\)
A= 3 + \(\frac{10}{3}\)+\(\frac{11}{3}\)+\(\frac{18}{5}\)+\(\frac{19}{5}\)
A= 3 +\(\frac{21}{3}\)+\(\frac{37}{5}\)
A= 3 + 7 +\(7\frac{2}{5}\)
A= 10 +\(7\frac{2}{5}\)
A=\(17\frac{2}{5}\)
còn B= [ 5 * 3,5] = [17,5] =17
có (17=17) =>\(17\frac{2}{5}\)> 17 => A>B