Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lucy Heartfilia

So sánh A và B biết :

A = \(\frac{10^{2016}+1}{10^{2017}+1}\)

B = \(\frac{10^{2017}+1}{10^{2018}+1}\)

Huỳnh Phước Mạnh
21 tháng 4 2018 lúc 20:33

Ta có: \(\hept{\begin{cases}A=\frac{10^{2016}+1}{10^{2017}+1}\\B=\frac{10^{2017}+1}{10^{2018}+1}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}10A=\frac{10^{2017}+10}{10^{2017}+1}=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\\10B=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\end{cases}}\)

Vì \(\frac{9}{10^{1017}+1}>\frac{9}{10^{2018}+1}\)

nên \(10A>10B\Rightarrow A>B\)

Huỳnh Quang Sang
21 tháng 4 2018 lúc 20:34

\(A=\frac{10^{2016}+1}{10^{2017}+1}\Rightarrow10A=\frac{10\cdot(10^{2016}+1)}{10^{2017}+1}=\frac{10^{2017}+10}{10^{2017}+1}\)

\(A=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)

Vì \(10^{2016}+1< 10^{2017}+1\)

\(\Rightarrow\frac{9}{10^{2016}+1}>\frac{9}{10^{2017}+1}\)

\(\Rightarrow\)\(1+\frac{9}{10^{2016}+1}>1+\frac{9}{10^{2017}+1}\)

....

Khoa Đoàn Đăng
21 tháng 4 2018 lúc 20:47

A= \(\frac{10^{2016}+1}{10^{2016}+1}=\frac{10^{2016}+1}{10\cdot10^{2016}+1}=\frac{1}{10}\cdot\frac{10^{2016}+1}{10^{2016}+1}=\frac{1}{10}\)(1)

B=\(\frac{10^{2017}+1}{10^{2018}+1}=\frac{10^{2017}+1}{10\cdot10^{2017}+1}=\frac{1}{10}\cdot\frac{10^{2017}+1}{10^{2017}+1}=\frac{1}{10}\)(2)

Từ (1) và (2) \(\Rightarrow\)A=B


Các câu hỏi tương tự
Thanh Thảo Trịnh
Xem chi tiết
Trần Tích Thường
Xem chi tiết
Nguyễn Bá Hùng
Xem chi tiết
Nguyễn Đức Hiền
Xem chi tiết
Quách Trung Kiên
Xem chi tiết
Quách Trung Kiên
Xem chi tiết
Huỳnh Thị Mỹ Duyên
Xem chi tiết
thungan2102006
Xem chi tiết
Phạm Trần Mai Hiên
Xem chi tiết