\(19A=\frac{19^{31}+95}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
\(19B=\frac{19^{32}+95}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
Ta thấy \(19A>19B\) nên A > B
Ta có \(A=\frac{19^{30}+5}{19^{31}+5}\)
Suy ra \(19A=\frac{19^{31}+95}{19^{31}+5}=\frac{19^{31}+5}{19^{31}+5}+\frac{90}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
Ta có \(B=\frac{19^{31}+5}{19^{32}+5}\)
Suy ra \(19B=\frac{19^{32}+95}{19^{32}+5}=\frac{19^{32}+5}{19^{32}+5}+\frac{90}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
Vì \(19^{31}+5< 19^{32}+5\Rightarrow\frac{90}{19^{31}+5}>\frac{90}{19^{32}+5}\Rightarrow1+\frac{90}{19^{31}+5}>1+\frac{90}{19^{32}+5}\)
Do đó \(19A>19B\Rightarrow A>B\)
Vậy A > B
\(19A=\frac{19\left(19^{30}+5\right)}{19^{31}+5}=\frac{19^{31}+95}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
\(19B=\frac{19\left(19^{31}+5\right)}{19^{32}+5}=\frac{19^{32}+95}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
Do \(\frac{90}{19^{31}+5}>\frac{90}{19^{32}+5}\)
Nên \(1+\frac{90}{19^{31}+5}>1+\frac{90}{19^{32}+5}\)
Hay 19A>19B
Suy ra A>B
Vậy A>B