#)Giải :
Ta có :
\(A=\frac{2003\times2004-1}{2003\times2004}=\frac{2003\times2004}{2003\times2004}-\frac{1}{2003\times2004}=1-\frac{1}{2003\times2004}\)
\(B=\frac{2004\times2005-1}{2004\times2005}=\frac{2004\times2005}{2004\times2005}-\frac{1}{2004\times2005}=1-\frac{1}{2004\times2005}\)
Vì \(\frac{1}{2003\times2004}>\frac{1}{2004\times2005}\)
\(\Rightarrow A>B\)
+) \(A=\frac{2003\times2004-1}{2003\times2004}\)
\(=\frac{2003\times2004}{2003\times2004}-\frac{1}{2003\times2004}\)
\(=1-\frac{1}{2003\times2004}\)
+) \(B=\frac{2004\times2005-1}{2004\times2005}\)
\(=\frac{2004\times2005}{2004\times2005}-\frac{1}{2004\times2005}\)
\(=1-\frac{1}{2004\times2005}\)
+) Vì 2004 x 2005 > 2003 x 2004
=> \(\frac{1}{2004\times2005}< \frac{1}{2003\times2004}\)
=> \(1-\frac{1}{2004\times2005}>1-\frac{1}{2003\times2004}\)
Vậy B > A
A=2003x2004 - 1/2003x2004=2003x2004/2003x2004 - 1/2003x2004=1 - 1/2003x2004
B=2004x2005 - 1/2004x2005=2004x2005/2004x2005 - 1/2004x2005=1 - 1/2004x2005
Vì 1=1 và 1/2003x2004 > 1/2004x2005 nên 1-1/2003x2004 < 1-1/2004x2005
Vậy B < A