Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jessica Jung

So sánh: a, 4^222 và (-2)^444 b, (-3333)^4444 và 4444^3333 c, 4^30 và 3 nhân 24^10?

Ai nhanh tick

Zeref Dragneel
22 tháng 11 2015 lúc 19:24

Bài này ta làm như sau: 
Câu a) ta có 4^222= (2^2)222 = 2^(2.222) = (-2)^444 vậy suy ra 4^(222) = (-2)^444 

 

Câu b) Bài toán yêu cầu ta so sánh: (-3333)^4444 và 4444^3333 
Ta có: (-3333)^4444 = (3333)^4444= (3.1111)^(4.1111) =[(3.1111)^4]^1111 
Mặt khác ta có: 4444^3333= (4.1111)^(3.1111) =[(4.1111)^3]^1111 
Đến đây ta so sánh A=(3.1111)^4 với B= (4.1111)^3 
A= (3^4).(1111).(1111)^3 
B=(4^3).(1111)^3 
Đến đây ta lại so sánh (3^4).1111 với 4^3 
Dễ dàng nhận thấy (3^4).1111 > 4^3 =64 
Vậy kết luận 3333^4444 > 4444^3333 
Bài c) Ta có 4^30 =(4^3)^10= 64 ^10 = (4^10).(2^10).(8^10) 
Ta lại có: (3).(24)^10 =(3).(3^10).(8^10) 
Đến đây ta lại so sánh:(4^10).(2^10) với (3).(3^10) 
Dễ dàng nhận thấy 4^10 > 3^10 và 2^10 >3 
Nên suy ra (4^10).(2^10) > (3). (3^10) 
vậy 4^30 > (3).(24^10)

tick với đó


Các câu hỏi tương tự
pokiwar
Xem chi tiết
Đặng Trịnh Gia Phát
Xem chi tiết
tram pham
Xem chi tiết
Nguyễn Văn Hoàng
Xem chi tiết
Trần Tuyết Nhi
Xem chi tiết
Anh
Xem chi tiết
THI MIEU NGUYEN
Xem chi tiết
tran chinh
Xem chi tiết
THI MIEU NGUYEN
Xem chi tiết