\(2^8\)
\(8^2=\left(2^3\right)^2=2^6\)
\(\Rightarrow2^8>2^6\)
\(\Rightarrow2^8>8^2\)
2300 và 3200
Ta có: \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\) nên \(2^{300}< 3^{200}\)
\(a,2^{300}=2^{3^{100}}=8^{100}\)
\(3^{200}=9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
\(b,9^{100}=3^{2^{100}}=3^{200}\)
\(27^{50}=3^{150}\)\(\Rightarrow9^{100}>27^{50}\)
\(c,8^2=2^{3^2}=2^6\)
\(\Rightarrow2^8>8^2\)
a, 2^300<3^200 b, 9^100>27^50 c, 2^8>8^2