Ta có:
-\(99^{20}=9^{20}\cdot11^{20}=9^{10}\cdot9^{10}\cdot11^{10}\cdot11^{10}=9^{10}\cdot\left(9^{10}\cdot11^{10}\cdot11^{10}\right)=9^{10}\cdot1089^{10}\)
-\(9^{10}\cdot11^{30}=9^{10}\cdot11^{10}\cdot11^{10}\cdot11^{10}=9^{10}\left(11^{10}\cdot11^{10}\cdot11^{10}\right)=9^{10}\cdot1331^{10}\)
Vì \(9^{10}\cdot1089^{10}< 9^{10}\cdot1331^{10}\)nên \(99^{20}< 9^{10}\cdot11^{30}\)
Vậy ....