so sanh : A=\(\sqrt{11+\sqrt{96}}\) va B=\(\frac{2\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}\)
so sanh \(-3\sqrt{7}\)va \(-9\)
so sanh :\(\sqrt{1999}+\sqrt{2001}..va..2\sqrt{2000}\)
So sánh:
1,\(2-\sqrt{2}va\frac{1}{2}\)
2, \(2\sqrt{3}-5va\sqrt{3}-4\)
3, \(\sqrt{3}-3\sqrt{2}va-4\sqrt{3}+5\sqrt{2}\)
4,\(1-\sqrt{3}va\sqrt{2}-\sqrt{6}\)
5, \(\sqrt{4\sqrt{5}}va\sqrt{5\sqrt{3}}\)
6, \(\sqrt{\sqrt{6}-\sqrt{5}}-\sqrt{\sqrt{3}-\sqrt{2}}va..0\)
7, \(-2\sqrt{\frac{1}{2}\sqrt{5}}va-3\sqrt{\frac{1}{3}\sqrt{2}}\)
so sanh \(\frac{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}+\sqrt{2-\sqrt{3}}}}và\frac{\sqrt{3}}{3}\)
So sanh: x=\(\sqrt{2019}\)va y=\(2\sqrt{2018}-\sqrt{2017}\)
so sanh \(\sqrt{2006}+\sqrt{2008}\) va \(2\sqrt{2007}\)
\(\sqrt{24}+\sqrt{63}+3\)va 16 .so sanh
so sanh B=\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+....+\frac{1}{\sqrt{99}+\sqrt{100}}\)voi \(\frac{2}{7}\)