ta có\(333^{444}=\left(333\right)^{4^{111}}=36926037^{111}\)
\(444^{333}=\left(444\right)^{3^{111}}=87528384^{111}\)
vì \(87528384^{111}>36926037^{111}\)
Vậy \(333^{444}< 444^{333}\)
323 và 515
12 167 và 759 375
= 323 < 515
\(333^{444}=333^{4.111}=\left(333^4\right)^{111}=1229637032^{111}\)
\(444^{333}=444^{3.111}=\left(444^3\right)^{111}=87528384^{111}\)
Vì \(1229637032^{111}>87528384^{111}\)nên \(333^{444}>444^{333}\)