Ta có: \(\frac{n+1}{n+4}=\frac{n+4-3}{n+4}=\frac{n+4}{n+4}-\frac{3}{n+4}=1-\frac{3}{n+4}\)
\(\frac{n}{n+3}=\frac{n+3-3}{n+3}=\frac{n+3}{n+3}-\frac{3}{n+3}=1-\frac{3}{n+3}\)
Vì \(\frac{3}{n+4}< \frac{3}{n+3}\Rightarrow1-\frac{3}{n+4}>1-\frac{3}{n+3}\Rightarrow\frac{n+1}{n+4}>\frac{n}{n+3}\)
Vậy \(\frac{n+1}{n+4}>\frac{n}{n+3}\)