Ta có : \(2^{90}=\left(2^{10}\right)^9=1024^9\)
\(5^{36}=\left(5^4\right)^9=625^9\)
Ta thấy : \(1024^9>625^9\Rightarrow2^{90}>5^{36}\)
2^90= (2^10)^9 = 1024 ^9
5^36 = (5^4)^9 = 625^9
ta thấy 1024^9 > 625^9 nên 2^90>5^36
\(2^{90}=2^{10.9}=\left(2^{10}\right)^9=1024^9.\)
\(5^{36}=5^{4.9}=\left(5^4\right)^9=625^9.\)
Vì\(1024>625\)
\(\Rightarrow625^9< 1024^9\)
Hay \(2^{90}>5^{36}.\)
2^90 = ( 2^10 )^9 = 1024^9
5^36 = ( 5^4 )^9 = 625^9
Vì 1024 > 625 nên 1024^9 > 625^9 hay 2^90 > 5^36
\(2^{90}=\left(2^{10}\right)^9=1024^9\)
\(5^{36}=\left(5^4\right)^9=625^9\)
Vì 1024 > 625
nên bạn tự kết luận
Ta có:
\(2^{90}=\left(2^{10}\right)^9=1024^9\)
\(5^{36}=\left(5^4\right)^9=625^9\)
Vì \(1024^9>625^9\Rightarrow2^{90}>5^{36}\)
Vậy 290 > 536 .