Đặt \(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
Ta có:
\(\dfrac{1}{101}>\dfrac{1}{200}\)
\(\dfrac{1}{102}>\dfrac{1}{200}\)
\(\dfrac{1}{103}>\dfrac{1}{200}\)
...
\(\dfrac{1}{199}>\dfrac{1}{200}\)
\(\Rightarrow A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)
\(=\dfrac{1}{200}.100\)
\(=\dfrac{1}{2}\)
Mà \(\dfrac{1}{2}< 1\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}< 1\).