\(10^{30}=\left(10^3\right)^{10}=1000^{10};2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
\(1000^{10}<1024^{10}\)
Do đó 2100 > 1030
\(10^{30}=10^{3.10}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=2^{10.10}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì \(1000^{10}<1024^{10}\)
Nên \(10^{30}<2^{100}\)