Đặt A=1+2+22+23+...+22009
B=22010-1
=>2A=2+22+23+...+22010
=>2A-A=22010-1 hay A=22010-1=B
Đặt \(A=1+2+2^2+2^3+......+2^{2009}\)
\(2A=2+2^2+2^3+......+2^{2009}+2^{2010}\)
\(2A=2+2^2+2^3+......+2^{2009}+2^{2010}-\left(1+2+2^2+2^3+......+2^{2009}\right)\)
\(A=2^{2010}-1\)
Vậy \(1+2+2^2+2^3+......+2^{2009}=2^{2010}-1\)