(1) 7^0=01
(2) 7^1=07
(3) 7^2=49
(4) 7^3=343
-----------
(5) 7^4=2401
(6) 7^5=16807
(7) 7^6=117649
(8) 7^7=823543
----------------
(9) 7^8=.....64801
(10) 7^9=.....53607
v.v.
Thấy chu kỳ lặp đi lặp lại hai số sau cùng 01; 07; 49; 43, nhóm 4 số.
Đến số luỷ thừa 100 thì số lặp đi lặp lại 25 lần nhóm 4, số cuối 01
Vậy 7^101 là một dãy số ...07 chia 10 dư 7
Đáp số:
7
1) 7^0=01
(2) 7^1=07
(3) 7^2=49
(4) 7^3=343
-----------
(5) 7^4=2401
(6) 7^5=16807
(7) 7^6=117649
(8) 7^7=823543
----------------
(9) 7^8=.....64801
(10) 7^9=.....53607
v.v.
Thấy chu kỳ lặp đi lặp lại hai số sau cùng 01; 07; 49; 43, nhóm 4 số.
Đến số luỷ thừa 100 thì số lặp đi lặp lại 25 lần nhóm 4, số cuối 01
Vậy 7^101 là một dãy số ...07 chia 10 dư 7
đáp số 7
Ta có 7^101=7^4.25+1=(7^4)^25.7=(...1)^25.7=(...1).7=...7
Số dư của 7^101 khi chia cho 10 là ...7:10 dư 7
Vậy số dư của 7^101 khi chia cho 10 là 7
nên hok thêm cách tinh 1 cs tận cùng nhé !! thầy Trần minh dạy đó