Số đó có dạng 7k+2, K thuộc: N.Xét (7k+2)^2=49k^2+28k+4 chia 11 dư 3 nên 49k^2+28k+1 chia hết cho 11,49k^2+28k+1=44k^2+22k+5k^2+6x+1 mà 44k^2+22k chia hết cho 11 nên 5k^2+6k+1 chia hết cho 11 mà 5k^2+6k+1=(5k+1)(k+1) nên nên 5k+11 chia hết cho 11 hoặc k+1 chia hết cho 11( giải hộ với ạ cần gấp)
1. Phân tích số 100 thành tổng 2 số trong đó có 1 số chia hết cho 7 và 1 số chia hết cho 11
2. tìm số nguyên n ( min) sao cho khi chia 1000 dư 1 và chia cho 761 dư 8
=> AI GIÚP VỚI
Cho số nguyên dương n > 1, k mà k chia hết cho n − 1. Chứng minh rằng nknk −1 chia hết cho (n−1)2
Cmr (2^3^4n+1) + 3 chia hết cho 11 với n thuộc N.
(3^2n+2 + 2^5n+1) chia hết cho 11
chứng minh 3^2^(4n+1) +2 chia hết cho 11 với mọi n thuộc N*
1. C/M phân số tối giản : \(\frac{15n^2+8n+6}{30n^2+21n+13}\)
2. Cho a không chia hết cho 2 và 3. CMR \(4a^2+3a+5\)chia hết cho 6
3. Rìm n sao cho \(n^2+9n-2\)chia hết cho 11
4. CM:a. \(5^n\left(5^4+1\right)-6^n\left(3^n+2^n\right)\)chia hết cho 91
b.\(6^{2n}+19^n-2^{n+1}\)chia hết cho 17
5. Cho 2n + 1 và 3n + 1 là số chính phương. CMR: 5n + 3 là hợp số
6. Tìm n là STN để:
a. n + 11 chia hết cho n + 1
b. \(n^2+n+1\)chia hết cho n + 1
Chứng minh (32n+2 + 26n+1) chia hết cho 11
Tìm k để phương trình : ( x2 + 2 )[ x2 - 2x(2k - 1) + 5k2 - 6k +3 ] = 2x + 1 có nghiệm