\(SimplifyA=\frac{1+\frac{1}{3+}+\frac{1}{5}...+\frac{1}{99}}{\frac{1}{1x99}+\frac{1}{3x97}+...+\frac{1}{49x51}}\)
\(1+\frac{1}{3}+\frac{1}{5}+................+\frac{1}{97}+\frac{1}{99}\)
\(\frac{1}{1x99}+\frac{1}{3x97}+\frac{1}{5x95}+............+\frac{1}{97x3}+\frac{1}{99x1}\)
Tích giá trị các biểu thức:
a) A = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{97.3}+\frac{1}{99.1}}\)
b) B = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
tính
\(P=\frac{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1}.99+\frac{1}{3}.97+\frac{1}{5}.95+...+\frac{1}{97}.3+\frac{1}{99}.1}\)
\(A=\frac{1}{3X5}+\frac{1}{5X7}+...+\frac{1}{47X49}+\frac{1}{49X51}\)
giải hộ mình nha
Chứng minh rằng
a) \(\frac{1}{5}<\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}<\frac{2}{5}\)
b) \(\frac{1}{15}<\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}<\frac{1}{10}\)
\(A=\frac{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{97.3}+\frac{1}{99.1}}\)
Bài 1Tìm x biết
\(x-\frac{37}{45}=\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\)
Bài 2 Tính giá trị các biểu thức sau
a) A = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{97.3}+\frac{1}{99.1}}\)
b) B = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
A=\(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{97.3}+\frac{1}{99.1}}\)