Coi: \(C=1+2+2^2+2^3+...+2^{2008}\)
\(\Rightarrow2C=2.\left(1+2+2^2+2^3+...+2^{2008}\right)=2+2+2^2+...+2^{2007}\)
\(\Rightarrow C=2C-C=\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)=2-2^{2008}\)
\(\Rightarrow S=\frac{2-2^{2008}}{1-2^{2009}}\)
Coi: $C=1+2+2^2+2^3+...+2^{2008}$C=1+2+22+23+...+22008
$\Rightarrow2C=2.\left(1+2+2^2+2^3+...+2^{2008}\right)=2+2+2^2+...+2^{2007}$
Coi: $C=1+2+2^2+2^3+...+2^{2008}$C=1+2+22+23+...+22008
$\Rightarrow2C=2.\left(1+2+2^2+2^3+...+2^{2008}\right)=2+2+2^2+...+2^{2007}$
Coi: $C=1+2+2^2+2^3+...+2^{2008}$C=1+2+22+23+...+22008
$\Rightarrow2C=2.\left(1+2+2^2+2^3+...+2^{2008}\right)=2+2+2^2+...+2^{2007}$
Coi: $C=1+2+2^2+2^3+...+2^{2008}$C=1+2+22+23+...+22008
$\Rightarrow2C=2.\left(1+2+2^2+2^3+...+2^{2008}\right)=2+2+2^2+...+2^{2007}$