\(3x^5-x^2+2x^3-6x^4+2=3x^5-6x^4+2x^3-x^2+2 \)
Có : \(\frac{3x^5-6x^4+2x^3-x^2+2}{3x^2+2}=\frac{x^3.\left(3x^2+2\right)-6x^4-x^2+2}{3x^2+2}=\frac{...-3x^2.2x^2-4x^2+3x^2+2}{3x^2+2}\)
\(=\frac{...-2x^2.\left(3x^2+2\right)+\left(3x^2+2\right)}{3x^2+2}=\frac{\left(x^3-2x^2+1\right).\left(3x^2+2\right)}{3x^2+2}=x^3-2x^2+1\)