S=\(\frac{3}{1.4}\)+\(\frac{3}{4.7}\)+...+\(\frac{3}{40.43}\)+\(\frac{3}{43.46}\)
3S=\(\frac{9}{1.4}\)+\(\frac{9}{4.7}\)+...+\(\frac{9}{40.43}\)+\(\frac{9}{43.46}\)
3S=9-\(\frac{9}{4}\)+\(\frac{9}{4}\)-\(\frac{9}{7}\)+...+\(\frac{9}{40}\)-\(\frac{9}{43}\)+\(\frac{9}{43}\)-\(\frac{9}{46}\)
3S=9-\(\frac{9}{46}\)
3S=\(\frac{405}{46}\)
S=\(\frac{405}{46}\):3
S=\(\frac{135}{46}\)
=> S>1 mới đúng