S=1/2+1/6+...............+1/2450
S=1/1.2+1/2.3+............+1/49.50
S=1-1/2+1/2-1/3+..........+1/49-1/50
S=1-1/50
S=49/50
S=1/2+1/6+...............+1/2450
S=1/1.2+1/2.3+............+1/49.50
S=1-1/2+1/2-1/3+..........+1/49-1/50
S=1-1/50
S=49/50
S=1/2+1/6+1/12+1/20+...+1/2352+1/2450
S=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/48-1/49+1/49-1/50
S=1-1/50
S=49/50
Vậy S=49/50
\(S=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{2450}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(S=1-\frac{1}{50}\)
\(S=\frac{49}{50}\)
S=11.2 +12.3 +...+149.50
S=1−12 +12 −13 +...+149 −150
S=1−150
S=4950
Đúng 2 Sai 0
Trương Quang Hải 08/02/2016 lúc 12:36
Báo cáo sai phạm
S=1/2+1/6+1/12+1/20+...+1/2352+1/2450
S=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/48-1/49+1/49-1/50
S=1-1/50
S=49/50
Vậy S=49/50